标签 决策树 下的文章

决策树在《统计学习方法》书中对决策树的模型有一个规范的回答。最顶端的是根节点,对样本所有的预测都是从根节点开始依次判断。每个圆形的都是一个用于判断的节点,每一个节点只对属性的其中一个特征进行判断,比如说上文的苹果,圆形节点要么判断颜色,要么判断硬度等等,总之只判断其中的一个特征。在判断节点中只保存告诉你该往哪走的信息,在判断节点中并没有有关结论的信息。矩形节点就是标记节点,在判断中走到矩形就可以认为预测过程结束,将矩形中的标签作为预测结果返回。那么在训练过程中构建这棵决策树的时候需要怎么做呢?就是一个一个特征属性依次比较过去然后建立分支吗?不是的,我们需要挑选最有代表性的特征。比如说苹果的……